
J
u
n
e
 
2
0
1
9

M
o
n
o
l
i
t
h
 
A
I

T
h
o
u
g
h
t
 
l
e
a
d
e
r
s
h
i
p

In 2018, for three months, I (Dr. Richard Ahlfeld) travelled around the world and asked questions to understand
better the current landscape of advanced product development . I spent most my time in Germany, France and the
UK but also ventured to Silicon Valley, China and even South Korea. In this article, I want to summarise what I learnt
about where most companies currently are, and how after finishing this journey I was able to raise £2 million in
venturefundingto builda company that reimaginesthe way most manufacturerscurrentlydeveloptheir products.



M
o
n
o
l
i
t
h
 
A
I

H
o
w
 
M
a
c
h
i
n
e
 
L
e
a
r
n
i
n
g
 
w
i
l
l
 
t
r
a
n
s
f
o
r
m
 
c
o
m
p
l
e
x
 
p
r
o
d
u
c
t
 
e
n
g
i
n
e
e
r
i
n
g

/
0
2

In 2018, I was provided with a curious new opportunity. I won a 
Techcelerate grant: £30,000 that could only be used for travel and talking to 
industry experts. It could not be spent on scientific research, software 
development, product development, or any form of engineering — just on 
chatting with experts to understand better the current landscape of 
advanced product development and the state of the art in machine learning.

So for three months, I travelled around the world and asked questions. I 
spent most my time in Germany, France and the UK but also ventured to 
Silicon Valley, China and even South Korea. In this article, I want to 
summarise what I learnt about where most companies currently are, and 
how after finishing this journey I was able to raise £2 million in venture 
funding to build a company that reimagines the way most manufacturers 
currently develop their products: Monolith AI. 

Why I wrote this article

Developing a complex product — a car, an engine, an aeroplane, or 
even a lawnmower — inevitably takes a lot of time and costs a lot of 
money. Most importantly for this article, however, it also creates the 
most valuable data that engineering companies possess. So it's a bit 
surprising, at first glance, that the first lesson I learnt was that most 
digital innovation incentives have ignored this goldmine of data. 
Instead, they have focussed on logistics, customer analytics, and 
predictive maintenance or connected devices. That makes sense, of 
course. These areas generally provide simple, tabulated big data that 
can be ingested and learnt from.

Advanced Research & Development, on the other hand, uses 
complicated physical equations and simulation tools that solve partial 
differential equations, and collect generally seriously noisy and 
biased sensor data. So, unlike in the other areas, it's quite hard to 
find machine learning tools that work out of the box for the kind of 
data types that are created by R&D departments. In addition, 
advanced engineers are generally fairly clever people, so nobody felt 
the urgent need to explore alternative ways of building products. 
Sometimes, these experts have even experimented with machine 
learning themselves and got massively disappointed that they really 
are not the promising new magic tool that they are sometimes 
propped up to be. Clever automatically found mathematical models 
and neural networks have been used since the 70s in controllers, 
filters, optimisation, and so on.

Lessons learnt



M
o
n
o
l
i
t
h
 
A
I

H
o
w
 
M
a
c
h
i
n
e
 
L
e
a
r
n
i
n
g
 
w
i
l
l
 
t
r
a
n
s
f
o
r
m
 
c
o
m
p
l
e
x
 
p
r
o
d
u
c
t
 
e
n
g
i
n
e
e
r
i
n
g

/
0
3

The first response I usually got from advanced engineers is: oh great, 
another machine learning expert who is going to say if you give me all 
your data, I can solve all your problems. There is a reason why we 
aren't doing this already and it can be summarised in one simple 
sentence:

Collecting good data is expensive. Running really informative 
simulations takes a long time and performing accurate experiments is 
generally quite expensive. As a result, R&D departments collect as little 
data as possible to understand a problem. Because of this, they believe 
that they do not have enough data to learn from. This is where I often 
found them to be wrong.

In 2016, I was an invited researcher at the Stanford Center of 
Turbulence Research in California, where I experimented with using 
surrogate models and machine learning models to better understand 
flow physics. While I don't think the research I did back then was of 
great importance, I learnt two very interesting concepts.

1. All engineering efforts are essentially a journey to learn a 
functional relationship by analysing data — just like all machine 
learning problems

2. Machine learning applied to physical problems can be 
significantly more fruitful in engineering than it could ever be in 
finance or insurance. Why? Because engineering is applying the 
laws of physics. Thus, there are always underlying physical 
relationships in all engineering data

Put together, these two points created an entirely new image of 
engineering and what engineering companies do in my mind. Let's start 
with the first point.

Whenever somebody performs an experiment, tests a prototype or 
collects sensor data, they are doing so to understand a system. The 
human mind usually understands a technical system by understanding 
one parameter at a time. Even if you follow refined variational analysis 
methods such as Taguchi's method, you end up with a lot of testing to 
do. Here's a very simple example. Let's say you want to set the 
temperature in your electric shower. You can modify the flow velocity 
and the power of your heating. To get the right temperature, you'll first 
play with the flow velocity and then play with the heating until you get 
the temperature you want. This will take you a couple of minutes to do. 

"I like sorting my data“
said no engineer ever. 



M
o
n
o
l
i
t
h
 
A
I

H
o
w
 
M
a
c
h
i
n
e
 
L
e
a
r
n
i
n
g
 
w
i
l
l
 
t
r
a
n
s
f
o
r
m
 
c
o
m
p
l
e
x
 
p
r
o
d
u
c
t
 
e
n
g
i
n
e
e
r
i
n
g

/
0
4

If, however, let's say you could ask Alexa or Siri to help you, they would 
tell you: Set the flow velocity to 75% and the heating to 80% first and 
then to 40% and 65% second and 85% and 90% third. Then tell me 
how you feel. Based on these three points they can determine a 
function and solve an optimisation problem to find your perfect water 
temperature and flow velocity. It's simple math. 

Now imagine applying this same concept to a race car company that 
spends millions testing their new cars in track tests, or 
turbomachinery companies that spend tens of millions learning how 
to calibrate their engines. Algorithms can learn from random data, 
humans cannot. Engineering is full of problems where this kind of 
algorithmic engineering can literally save up to 98% of the time spent 
on trying to understand something.

Even though the big automotive companies spend billions using the 
most recent advances in deep learning in their autonomous cars, none 
of them uses this simple trick to accelerate their product development 
and testing time. I found the same goes for turbomachinery 
manufacturers, packaging manufacturers, defence companies, medical 
equipment manufacturers, and so on.

Now to the second big lesson learnt.

All engineering data contains physical patterns. It's a simple fact but 
I'll repeat it anyway. Now, the curious thing is that if you ask an 
engineer if they carry over data from, let's say, the 2017 car to the 
2018 car, they'll say: oh no. That doesn't work. The physics is too 
complicated and non-linear to make sense. They are right in many 
cases. However, let's say you build a model to optimise the fuel 
efficiency of your combustion engine for 2017. In 2018, you will build 
another model. Since both designs are different, the engineers in both 
cases will collect the exact same data: run the same simulations, 
perform the same tests. If you would have trained a Gaussian Process 
model on the final results from last year, and perfectly tuned its basis 
functions to describe the results in a most physical sense, and you 
reused this model this year as what machine learning experts call 
'your prior' assumptions and consider this year's learning as an 
extension of last year's, I guarantee you will find the answers you're 
looking for with around 70% less testing than before. Using the 
Monolith approach with clever priors, we have managed to find 
system responses for turbomachinery examples with as little as 12 
tests, down from 100.



M
o
n
o
l
i
t
h
 
A
I

H
o
w
 
M
a
c
h
i
n
e
 
L
e
a
r
n
i
n
g
 
w
i
l
l
 
t
r
a
n
s
f
o
r
m
 
c
o
m
p
l
e
x
 
p
r
o
d
u
c
t
 
e
n
g
i
n
e
e
r
i
n
g

/
0
5

To conclude this article, I would like to tell you one of my favourite 
anecdotes to explain why machine learning could drastically accelerate 
product development beyond what engineering companies currently do.

Imagine I put you in a huge empty hall with nothing but a box of 
matchsticks. In front of you, is a 100 square meter big painting on the wall 
but you don't know what it looks like. Training in logical thinking you will 
probably do a grid search. You will light a match stick every two meters 
and start building a picture. If you just use one matchstick per square 
meter you'll need 100 to figure out what's going on. If you used 
algorithmic engineering, you would start with 5 random locations. And 
then refine your search based on what you find. Let's say the top three are 
all blue sky. It makes no sense to search further. So instead you'll sample 
more in the bottom regions. You find water lilies. I assume you can create 
a really good approximation of the image within 20 samples — an 80% 
saving. Last but not least, let's say you use algorithmic engineering with 
prior knowledge of having trained your search algorithm on all major large 
artworks in the world. As soon as you find the first impressionist water 
lilies who will know it's the Orangerie in Paris and the painting is by Claude 
Monet!

Let's get back to the current stage of engineering. In all the engineering 
departments, I visited, whether it was Defence, Aerospace, Automotive, 
or Packaging I found at least one high-value application where huge 
amounts of resources were wasted trying to understand a complex 
problem using manual search methods instead of algorithmic ones.

Engineering design is often like trying to figure out what a painting
looks like if you can't see the whole picture. Inference and learning
can achieve the same results as a grid search much faster!



For more information
visit monolithai.com

http://www.monolithai.com/

